Abstract
Cyclopropenylidene (c-C(3)H(2)), chlorocyclopropenylidene (c-C(3)HCl), and their deuterated isotopomers were studied by the threshold photoelectron-photoion coincidence (TPEPICO) technique using VUV synchrotron radiation. The carbenes were generated via flash pyrolysis. In all species a change in geometry is visible upon ionization, with significant activity in the C═C, C-C-stretching mode and, in the case of c-C(3)H(2)/D(2), the C-H-bending mode. The electron is removed from an sp(2) like hybrid orbital centered on the carbene C atom. The mass selected threshold photoelectron (TPE) spectra were fitted by a Franck-Condon simulation, yielding the equilibrium geometry of the cation ground state ((1)A(1)). The adiabatic ionization energy IE(ad) of c-C(3)H(2) was determined to be 9.17 eV, in good agreement with calculations and literature values. Two vibrational wavenumbers of the cation were determined experimentally (ν(3)(+) = 1150 cm(-1) and ν(2)(+) = 1530 cm(-1)). Chlorocyclopropenylidene was also studied by TPE spectroscopy and has a similar IE(ad) of 9.17 eV. The spectrum also shows a vibrational progression that corresponds to the C═C- and C-C-stretching modes of the cation. The equilibrium geometry was also determined by a Franck-Condon fit. The IE(ad) of the deuterated isotopomers, c-C(3)D(2) and c-C(3)DCl, were also determined to be 9.17 eV. The spectra confirm the assignments for the nondeuterated species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.