Abstract

An epidemic model is proposed to describe the dynamics of disease spread between two patches due to population dispersal. It is proved that reproduction number is a threshold of the uniform persistence and disappearance of the disease. It is found that the dispersal rates of susceptible individuals do not influence the persistence and extinction of the disease. Furthermore, if the disease becomes extinct in each patch when the patches are isolated, the disease remains extinct when the population dispersal occurs; if the disease spreads in each patch when the patches are isolated, the disease remains persistent in two patches when the population dispersal occurs; if the disease disappears in one patch and spreads in the other patch when they are isolated, the disease can spread in all the patches or disappear in all the patches if dispersal rates of infectious individuals are suitably chosen. It is shown that an endemic equilibrium is locally stable if susceptible dispersal occurs and infectious dispersal turns off. If susceptible individuals and infectious individuals have the same dispersal rate in each patch, it is shown that the fractions of infectious individuals converge to a unique endemic equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call