Abstract

Gamma-aminobutyric acid (GABA) is a crucial inhibitory neurotransmitter of the central nervous system. It modifies the signal threshold of the nociceptor, allowing it to react to external stimuli in various circumstances. Thus, GABAergic behaviors are critical characteristics of adaptive behavior in life. Here, a threshold-modulative artificial GABAergic nociceptor is reported for the first time at a Pt/Ti/Nb2 O5- x /Al2 O3- y /Pt/Ti (top to bottom) of the double charge trapping structure. The Al2 O3- y layer contains deep defect states that function similarly to the GABA neurotransmitter in modulating the signal threshold. Meanwhile, the Nb2 O5- x layer traps volatile charges and produces nociceptive behaviors. The combined dynamics of the two layers readily offer threshold-modulative GABAergic nociceptive behaviors. Based on these GABAergic behaviors, a method of implementing hot- and cold-sensitive thermoreceptors is demonstrated and shows its potential applications in advanced sensory devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call