Abstract

Many ecological systems are characterized by brief periods of increased resource availability called resource pulses. Empirical studies suggest that some populations of primary consumers grow rapidly in response to resource pulses, but others instead remain at low abundance despite increases in resource availability. Previous theory suggests that the lack of increase in primary consumers might be due to predators, which can respond to increased prey density both numerically, by increasing their own population, and functionally, by killing prey at a faster rate. The complexity of potential population responses to resource pulses can be assessed with simulations, but analytical conditions determining when one observes qualitatively distinct dynamics have yet to be identified. Here we use a graphical method based on a bifurcation diagram to derive the conditions leading to qualitatively distinct steady state and transient prey population dynamics as levels of predation (abundance and diversity) vary. When predation thresholds are crossed, consumer populations respond numerically to increases in their resources and provide a secondary resource pulse to their predators and parasites. These community dynamics have broad implications for the impact of changing predator communities on insect and rodent population outbreaks, which are economically and epidemiologically important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.