Abstract

The characteristics of two-dimensional (2D) materials can be tuned by low-energy ion irradiation provided that the ion energy is correctly chosen. The optimum ion energy is related to Ethion, the minimum kinetic energy the ion should have to displace an atom from the material. Ethion can be assessed using the binary collision approximation (BCA) when the displacement threshold of the atom is known. However, for some ions the experimental data contradict the BCA results. Using density functional theory molecular dynamics (DFT-MD), we study the collisions of low-energy ions with graphene and hexagonal boron nitride and demonstrate that the BCA can strongly overestimate Ethion because energy transfer takes a finite time, and therefore, chemical interactions of the ion with the target are important. Finally, for all projectiles from H up to Ar, we calculate the values of Ethion required to displace an atom from graphene and h-BN, the archetypal 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.