Abstract

Implementations of cryptographic algorithms are vulnerable to side-channel attacks. Masking techniques are employed to counter side-channel attacks that are based on multiple measurements of the same operation on different data. Most currently known techniques require new random values after every nonlinear operation and they are not effective in the presence of glitches. We present a new method to protect implementations. Our method has a higher computational complexity, but requires random values only at the start, and stays effective in the presence of glitches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.