Abstract
Threshold harvesting removes the surplus of a population above a set threshold and takes no harvest below the threshold. This harvesting strategy is known to prevent overexploitation while obtaining higher yields than other harvesting strategies. However, the harvest taken can vary over time, including seasons of no harvest at all. While this is undesirable in fisheries or other exploitation activities, it can be an attractive feature of management strategies where removal interventions are costly and desirable only occasionally. In the presence of population fluctuations, the issue of variable harvests and population sizes becomes even more notorious. Here, we investigate the impact of threshold harvesting on the dynamics of both population size and harvests, especially in the presence of population cycles. We take into account semelparous and iteroparous life cycles, Allee effects, observation uncertainty, and demographic as well as environmental stochasticity, using generic mathematical models in discrete time. Our results show that threshold harvesting enhances multiple forms of population stability, namely persistence, constancy, resilience, and dynamic stability. We discuss plausible choices of threshold values, depending on whether the aim is resource exploitation, pest control, or the stabilization of fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Theoretical Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.