Abstract

The threshold gain (gth) of a two-dimensional (2D) photonic crystal distributed-feedback (DFB) laser composed of 8×8 dielectric cylinders was one order of magnitude smaller than that of an 8-pair 1D DFB laser with the identical refractive indexes. In the 2D finite-width photonic crystal laser, gth using the 1st photonic band was smaller than that using the higher photonic band, contrary to the expectation from the flatness of the photonic band structures. This unexpected gth is probably due to the longer optical path caused by the reflection at the side boundary. Moreover, gth using the 1st photonic band was the smallest in the Γ–X direction of the square-lattice photonic crystal. The gain-enhancement using the 1st–3rd photonic bands were 10–30 in the 2D photonic crystal and that using the 3rd band was the largest. The gain-enhancement using the 1st photonic band of the 2D photonic crystal consisting of dielectric cylinders was larger than that of air cylinders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.