Abstract

AbstractSingle‐stranded polynucleotides are used as model systems for the investigation of conformational changes induced by electric fields. It is demonstrated that the single‐strand helix–coil transition in poly(A), poly(dA), and poly(C) can be induced by application of high electric fields. The transition is measured by UV absorbance using polarized light at an angle of 54.8° with respect to the vector of the electric field and by electrodichroism. A linear increase of the absorbance, reflecting the helix‐to‐coil transition, is observed at increasing field strength. When ions are added to the polymer, electric fields do not induce conformation changes, unless a threshold value of the electric field strength E0 is exceeded. At field strengths above this threshold, the degree of transition is a linear function of the increase in field strength. The threshold values E0 show a linear increase with the logarithm of the ion concentration. Bivalent ions cause thresholds at much lower ion concentrations than mo‐novalent ions. The shielding efficiency of ions is correlated to the binding affinity of these ions to the polymer.The conformation changes induced by the field and the existence of thresholds can be explained on the basis of dissociation field effects. Similar threshold effects may be expected for other macromolecules as well as for membrane structures and may be important in the regulation of bioelectricity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.