Abstract

We study the reaction–diffusion Ebola PDE model that consists of equations that govern the evolution of susceptible, infected, recovered and deceased human individuals, as well as Ebola virus pathogens in the environment, with diffusive terms in all except the equation of the deceased human individuals. Under the setting of a spatial domain that is bounded, we prove the global well-posedness of the system; in contrast to the previous work on similar models such as cholera, avian influenza, malaria and dengue fever, diffusion coefficients may be different. Moreover, we derive its basic reproduction number, and under the condition that the diffusion coefficients of the susceptible and infected hosts are same, we prove the global stability of the disease-free-equilibrium, and uniform persistence in cases when the basic reproduction number lies beneath and above one, respectively. Again, we do not require that the diffusion coefficients of the recovered hosts be the same as the diffusion coefficients of the susceptible and infected hosts, in contrast to previous work on other models of infectious diseases. Another technical difficulty in our model is that the solution semiflow is not compact due to the lack of diffusion in the equation of the deceased human individuals; we overcome this difficulty using functional analysis techniques concerning Kuratowski measure of non-compactness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.