Abstract
The global dynamics of a time-delayed model with population dispersal between two patches is investigated. For a general class of birth functions, persistence theory is applied to prove that a disease is persistent when the basic reproduction number is greater than one. It is also shown that the disease will die out if the basic reproduction number is less than one, provided that the initial size of the infected population is relatively small. Numerical simulations are presented using some typical birth functions from biological literature to illustrate the main ideas and the relevance of dispersal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.