Abstract

<p style='text-indent:20px;'>In this paper, a stochastic SIRS epidemic model with nonlinear incidence and vaccination is formulated to investigate the transmission dynamics of infectious diseases. The model not only incorporates the white noise but also the external environmental noise which is described by semi-Markov process. We first derive the explicit expression for the basic reproduction number of the model. Then the global dynamics of the system is studied in terms of the basic reproduction number and the intensity of white noise, and sufficient conditions for the extinction and persistence of the disease are both provided. Furthermore, we explore the sensitivity analysis of <inline-formula><tex-math id="M1">\begin{document}$ R_0^s $\end{document}</tex-math></inline-formula> with each semi-Markov switching under different distribution functions. The results show that the dynamics of the entire system is not related to its switching law, but has a positive correlation to its mean sojourn time in each subsystem. The basic reproduction number we obtained in the paper can be applied to all piecewise-stochastic semi-Markov processes, and the results of the sensitivity analysis can be regarded as a prior work for optimal control.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.