Abstract

We study the problem of optimally controlling a multiserver queueing system. Customers arrive in a Poisson fashion and join a single queue, served by N servers, S 1,S 2,… , S N. The servers have different rates. The service times at each server are independent and exponentially distributed. The objective is to determine the policy which minimizes the average number of customers in the system. We show that any optimal, nonpreemptive policy is of threshold type, i.e., it assigns a customer to server S i, if this server is the fastest server available and the number of customers in the queue is m i or more. The threshold m i may depend on the condition of other (slower) servers at the decision instant. In order to establish the results, we reformulate the optimal control problem as a linear program and use a novel argument based on the structure of the constraint matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.