Abstract

Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer is performed on (N2H4)H+(H2O)n, where n = 1 and 2, and on the protonated unsymmetrical 1,1-dimethylhydrazine one-water complex. The primary dissociation pathway for all clusters is a loss of a single water molecule, which for n = 2 is followed by the sequential loss of an additional water molecule at higher collision energies. The data are analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies (BDEs). These are also converted using a rigid rotor/harmonic oscillator approximation to yield thermodynamic values at room temperature. Experimental BDEs compare favorably to theoretical BDEs determined at the B3LYP, M06, mPW1PW91, PBE0, MP2(full), and CCSD(T) levels of theory with a 6-311+G(2d,2p) basis set both with and without empirical dispersion. These calculations also allow visualization of the structures of these complexes, which are simple hydrogen-bonded donor-acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.