Abstract

Vitamin B 6-dependent enzymes may be grouped into five evolutionarily unrelated families, each having a different fold. Within fold type I enzymes, l-threonine aldolase ( l-TA) and fungal alanine racemase (AlaRac) belong to a subgroup of structurally and mechanistically closely related proteins, which specialised during evolution to perform different functions. In a previous study, a comparison of the catalytic properties and active site structures of these enzymes suggested that they have a catalytic apparatus with the same basic features. Recently, recombinant d-threonine aldolases ( d-TAs) from two bacterial organisms have been characterised, their predicted amino acid sequences showing no significant similarities to any of the known B 6 enzymes. In the present work, a comparative structural analysis suggests that d-TA has an α/β barrel fold and therefore is a fold type III B 6 enzyme, as eukaryotic ornithine decarboxylase (ODC) and bacterial AlaRac. The presence of both TA and AlaRac in two distinct evolutionary unrelated families represents a novel and interesting example of convergent evolution. The independent emergence of the same catalytic properties in families characterised by completely different folds may have not been determined by chance, but by the similar structural features required to catalyse pyridoxal phosphate-dependent aldolase and racemase reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.