Abstract
In this article we show that there exist measurable sets W⊂ℝ2 with finite measure that tile ℝ2 in a measurable way under the action of a expansive matrix A, an affine Weyl group \(\widetilde{W}\) , and a full rank lattice \(\widetilde{\varGamma}\subset\mathbb{R}^{2}\) . This note is follow-up research to the earlier article “Coxeter groups and wavelet sets” by the first and second authors, and is also relevant to the earlier article “Coxeter groups, wavelets, multiresolution and sampling” by M. Dobrescu and the third author. After writing these two articles, the three authors participated in a workshop at the Banff Center on “Operator methods in fractal analysis, wavelets and dynamical systems,” December 2–7, 2006, organized by O. Bratteli, P. Jorgensen, D. Kribs, G. Olafsson, and S. Silvestrov, and discussed the interrelationships and differences between the articles, and worked on two open problems posed in the Larson-Massopust article. We solved part of Problem 2, including a surprising positive solution to a conjecture that was raised, and we present our results in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.