Abstract

ABSTRACTThe packaging RNA (pRNA) found in the phi29 family of bacteriophage is an essential component of a powerful molecular motor used to package the phage's DNA genome into the capsid. The pRNA forms homomultimers mediated by intermolecular "kissing-loop" interactions, thus it is an example of the unusual phenomenon of a self-associating RNA that can form symmetric higher-order multimers. Previous research showed the pRNAs from phi29 family phages have diverse self-association properties and the kissing-loop interaction is not the sole structural element dictating multimerization. We found that a 3-way junction (3wj) within each pRNA, despite not making direct intermolecular contacts, plays important roles in stabilizing the intermolecular interactions and dictating the size of the multimer formed (dimer, trimer, etc.). Specifically, the 3wj in the pRNA from phage M2 appears to favor a different conformation compared to the 3wj in the phi29 pRNA, and the M2 junction facilitates formation of a higher-order multimer that is more thermostable. This behavior provides insights into the fundamental principles of RNA self-association, and additionally may be useful to engineer fine-tuned properties into pRNAs for nanotechnology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call