Abstract

Dissipative three-wave weakly coupled states, appearing within collinear and non-collinear Bragg light scattering in a two-mode square-law nonlinear medium with the linear optical losses, are uncovered. The conditions for localizing these dissipative coupled sates as well as the spatial-frequency distributions of their optical components are studied theoretically in quasi-stationary regime. Then, a set of estimations related to the realization of similar dissipative three-wave coupled states have been performed within the acousto-optical experiments in the α-quartz crystalline cells providing collinear and non-collinear geometries of interactions. The distinguishing feature of these potential experiments is the fact that the presence of linear optical losses affects both shaping these dissipative weakly coupled states and the technique for detection and identification of their optical components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.