Abstract

AbstractStimulated Brillouin backscattering of an electromagnetic c.w. pump wave into a red-shifted Stokes wave through a dissipative material acoustic wave, as governed by the nonlinear space–time three-wave resonant model, gives rise to backward-traveling solitary pulses, which are experimentally obtained in long fiber-ring cavities. Stability analysis of the inhomogeneous stationary Brillouin mirror solution in a c.w.-pumped cavity exhibits a one-parameter Hopf bifurcation. Below a critical feedback, a time-dependent oscillatory regime occurs, and we get self-organization of a localized pulsed regime. Experimental results and a dynamical simulation confirm this scenario. A stable continuous family of super-luminous and sub-luminous backward-traveling dissipative solitary pulses is obtained through a single control parameter. A parallel analysis in an unbounded one-dimensional medium shows that the integrable three-wave super-luminous symmetrical soliton is unstable for small dissipation, and that it cascades to a turbulent multi-peak structure. The general non-symmetrical and non-integrable case is dependent only on the exponential slope of the wave front of the backscattered Stokes wave, thus providing the stable super- and sub-luminous dissipative solitary attractors. An overview of the experimental results for a large set of input pump powers and Stokes feedback conditions shows a remarkable agreement with the numerical simulations of the three-wave coherent partial differential equations model.KeywordsPump PowerSoliton SolutionRing CavityPump WavePartial Differential EquationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.