Abstract

Thirty strong Madden-Julian Oscillation (MJO) events in boreal winter 1982–2001 are selected to investigate the triggering processes of MJO convection over the western equatorial Indian Ocean (IO). These MJO events are classified into three types, according to their dynamic and thermodynamic precursor signals in situ. In Type I, a remarkable increase in low-level moisture occurs, on average, 7 days prior to the convection initiation. This low-level moistening is mainly due to the advection of the background mean moisture by easterly wind anomalies over the equatorial IO. In Type II, lower-tropospheric ascending motion anomalies develop, on average, 4 days prior to the initiation. The cause of this ascending motion anomaly is attributed to the anomalous warm advection, set up by a suppressed MJO phase in the equatorial IO. In Type III, there are no clear dynamic and thermodynamic precursor signals in situ. The convection might be triggered by energy accumulation in the upper layer associated with Rossby wave activity fluxes originated from the midlatitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.