Abstract
First-person interaction recognition is a challenging task because of unstable video conditions resulting from the camera wearer’s movement. For human interaction recognition from a first-person viewpoint, this paper proposes a three-stream fusion network with two main parts: three-stream architecture and three-stream correlation fusion. The three-stream architecture captures the characteristics of the target appearance, target motion, and camera ego-motion. Meanwhile the three-stream correlation fusion combines the feature map of each of the three streams to consider the correlations among the target appearance, target motion, and camera ego-motion. The fused feature vector is robust to the camera movement and compensates for the noise of the camera ego-motion. Short-term intervals are modeled using the fused feature vector, and a long short-term memory (LSTM) model considers the temporal dynamics of the video. We evaluated the proposed method on two public benchmark datasets to validate the effectiveness of our approach. The experimental results show that the proposed fusion method successfully generated a discriminative feature vector, and our network outperformed all competing activity recognition methods in first-person videos where considerable camera ego-motion occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.