Abstract

In order to explore the potential of profit margin improvement, a novel three-scale integrated optimization model of furnace simulation, cyclic scheduling, and supply chain of ethylene plants is proposed and evaluated. A decoupling strategy is proposed for the solution of the three-scale model, which uses our previously proposed reactor scale model for operation optimization and then transfers the obtained results as a parameter table in the joint MILP optimization of plant-supply chain scale for cyclic scheduling. This optimization framework simplifies the fundamental mixed-integer nonlinear programming (MINLP) into several sub-models, and improves the interpretability and extendibility. In the evaluation of an industrial case, a profit increase at a percentage of 3.25% is attained in optimization compared to the practical operations. Further sensitivity analysis is carried out for strategy evolving study when price policy, supply chain, and production requirement parameters are varied. These results could provide useful suggestions for petrochemical enterprises on thermal cracking production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.