Abstract

Significant alkali-metal-doped effects on the structure and the first hyperpolarizability (β 0) of effective multi-nitrogen complexant tris[(2-imidazolyl)methyl]amine (TIMA) are investigated. Three imidazoles of TIMA like three blades of propeller connect with methyls by the C–C single bonds. Because of the three C–C single-bond cooperative rotations, the TIMA behaves with great flexibility, and it is a high-performance multi-nitrogen complexant for the alkali metal doping. Thus, the new complexes Am-TIMA (Am = Li, Na, and K) with electride characteristic have diffuse excess electron than the reported electride-type system due to the strong interaction between the complexant TIMA and alkali metal. For the first hyperpolarizability, three engaging electrides Am-TIMA with the diffuse excess electrons exhibit considerably large β 0 values using the MP2 (full) method and the β 0 values of new electrides are greatly larger (3,464–29,705 times) than that (338 au) of TIMA. Surprisingly, the K-TIMA sets a new record β 0 value to be 1.00 × 107 au which far exceeds than that (3,694–76,978 au) of the reported electride-type system Li@calix[4]pyrrole (J Am Chem Soc 127:10977–10981, 2005) and Lin−H−(CF2−CH2)3−H (n = 1, 2) (J Am Chem Soc 129:2967–2970, 2007) and 31,123 au of the organometallic system (J Am Chem Soc 121:4047–4053, 1999) Ru(trans-4,4′-diethylaminostyryl-2,2′-bipyridine) 3 2+ , as well as 1.23 × 106 au of the large donor-CNT systems (Nano Lett 8:2814–2818, 2008). Clearly, the alkali-metal-doped effect on the first hyperpolarizability is very dramatic for the high-performance multi-nitrogen complexant TIMA. Considering simple possibility from molecule to material, the β 0 values of optimized Li-TIMA-dimer and Li-TIMA-tetramer are investigated by BHandHLYP method. Interestingly, results show that the order of β 0 value is Li-TIMA-monomer < Li-TIMA-dimer < Li-TIMA-tetramer. So the new three-propeller-blade-shaped electrides can be considered as candidates for high-performance nonlinear optical materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.