Abstract

The interface bonding method has a great influence on the mechanical properties of aluminum foam sandwich (AFS). This study aims to investigate the effect of different interface bonding methods on the mechanical properties of AFS. In this paper, the metallurgical-bonding interface-formation mechanism of AFS prepared by powder metallurgy was investigated. The shear properties of metallurgical-bonded AFS were determined by the panel peeling test. The flexural properties and energy absorption of metallurgical-bonded and glued AFS were analyzed through the three-point bending test. The results show that the magnesium, silicon, and copper elements of the core layer diffuse to panels and form a metallurgical composite layer. The metallurgical-bonding strength between the panel and core layer is higher than that of the foam core layer. The peak load of metallurgically-bonded AFS is 24% more than that of glued AFS, and energy absorption is 12.2 times higher than that of glued AFS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.