Abstract

We observed the emission of l,6-diphenyl-l,3,5-hexatriene (DPH) when excited with the fundamental output of a fs Ti:sapphire laser at 860 nm. The emission spectra of DPH were identical to that observed for one-photon excitation at 287 nm. The dependence of the DPH emission intensity on laser power was cubic, indicating three-photon excitation of DPH at 860 nm. At a shorter wavelength of 810 nm, the dependence on laser power was quadratic, indicating a two-photon process. At an intermediate wavelength of 830 nm the mode of excitation was a mixture of two- and three-photon excitation. At 830 nm the anisotropy is no longer a molecular parameter, and the mode of excitation and anisotropy of DPH depends on laser power. Frequency-domain anisotropy decays of DPH in triacetin revealed the same rotational correlation times for two- and three-photon excitation. However, the time 0 anisotropy of DPH was larger for three-photon excitation than for two-photon excitation. Steady-state anisotropy data for DPH-labeled membranes revealed the same transition temperature for one- and three-photon excitation. These anisotropy data indicate that membrane heating was not significant with three-photon excitation and that three-photon excitation may thus be of practical usefulness in fluorescence spectroscopy and microscopy of membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.