Abstract
Efficient three-step sequential three-photon near-infrared (NIR) quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics has been demonstrated, where an absorbed blue photon could be cut into three NIR photons at 1190, 1460, and 1800 nm with quantum yield greater than unity. On the basis of static and dynamic photoemission, monitored excitation, and time-resolved fluorescence spectra, we investigate in detail the underlying optoelectronic mechanism. Further development of an efficient triply-cutting material might open up a path towards ultra-efficient photonic devices, which enables more photons emitted than absorbed in the excitation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.