Abstract

We have considered the interference spectra that occur at the three-photon generated frequency arising from the interaction of three laser fields with a four-level atom, where two of the laser fields are on two-photon resonance with the three levels forming a “λ” scheme while the third laser operates between the second ground and the second excited state of the atom. At low intensities of all three laser fields, the overall intensity of the peak at the three-photon generated frequency, describing the spectrum of an electron in the second excited state, depends on the strength of the combined field of the two laser fields that are on two-photon resonance and it takes negative values. This indicates that light amplification without population inversion is likely to occur at the three-photon generated frequency. The combined field of the three laser fields induces multiphoton excitations near the three-photon generated frequency, whose peaks are characterized by linewidths which are much less than the natural linewidths of the atoms. These excitations describe absorption or stimulating emission processes depending on the values of the detunings of the laser fields. The derived results are graphically presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call