Abstract

The present paper discusses the key issues of carbon nanotube (CNT) dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt%) in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.

Highlights

  • The discovery of carbon nanotubes (CNTs) of exceptional mechanical properties combined with low density has led to their novel use as a reinforcing nanofiller in composite materials [1, 2]

  • Zhang et al [7] reported that the interfacial shear strength of an epoxy composite reinforced using a CNT/carbon fibre (T300) hybrid is as high as 106.55 MPa, almost 150% higher than that of non-CNT reinforced composites

  • Fourier transform infrared (FTIR) spectroscopy has shown limited ability to probe the structure of AFMWCNTs owing to their poor infrared transmittance

Read more

Summary

Introduction

The discovery of carbon nanotubes (CNTs) of exceptional mechanical properties combined with low density has led to their novel use as a reinforcing nanofiller in composite materials [1, 2]. The high strength and stiffness of CNTs leads to improved tensile, shear, and flexural properties of multiscale composites [3]. The homogeneous and consistent dispersion of CNTs in different polymers is found to be a major difficulty, which often degrades the properties of composites. Another important issue is the poor interfacial adhesion, which is mainly responsible for efficient load transfer from the CNTs to the matrix [6]. Experimental determination of the interfacial strength of CNT/polymer composites still remains a challenge. Zhang et al [7] reported that the interfacial shear strength of an epoxy composite reinforced using a CNT/carbon fibre (T300) hybrid is as high as 106.55 MPa, almost 150% higher than that of non-CNT reinforced composites. The interfacial shear stress transfer from the matrix to the reinforcement takes place via the interface, which can be largely improved by chemical functionalisation of the CNT surfaces [8]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call