Abstract

In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase β (Polβ) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by β-elimination. In addition, the polymerase activity of Polβ employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polβ complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polβ's catalytic mechanism provides valuable insights into DNA replication and damage repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call