Abstract

The traditional colony culture method for detection of pathogens is subjected to the laborious and tedious experimental procedure, which limits its application in point-of-care (POC) testing and quick diagnosis. This work designs an intelligent adhesive tape as a "three-in-one" platform for rapid sampling, photocontrolled release, and surface-enhanced Raman scattering (SERS) detection of pathogens from infected wounds. This tape is constructed by encapsulating densely packed gold nanostars as SERS substrates between two pieces of graphene and modified with a synthetic o-nitrobenzyl derivative molecule to form an artificial biointerface for highly efficient pathogen capture via electrostatic interaction. The captured targets can be conveniently released onto a solid culture medium by UV cleavage of o-nitrobenzyl moiety for pathogen growth and in situ SERS detection. As a proof of strategy, this "three-in-one" platform has been used for detecting the concurrent infection of Pseudomonas aeruginosa and Staphylococcus aureus by pasting the tape on a skin burn wound. The impressive detection performance with an analytical time of only several hours for these pathogens at an early growth stage demonstrates its great potential as a POC testing device for health care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call