Abstract

Female rats were treated with beta-endorphin on the 19th day of pregnancy. Serotonin content of immune cells (peritoneal lymphocytes, monocyte-macrophage-granulocyte group (mo-gran), mast cells, blood lymphocytes, granulocytes and monocytes, thymus lymphocytes) were studied in the mothers (P-generation four weeks after delivery), in the male offspring (F1) generation (at seven weeks), in the female offspring (four weeks after their own delivery) and in their offspring (F2 generation, at seven weeks). P-mother cells' serotonin content was not influenced by endorphin treatment, while F1 generation's mo-gran and blood lymphocyte serotonin content was reduced (in contrast, histamine content of mo-gran increased). Four weeks after delivery, an increase in serotonin content was observed in the F1 generation in the peritoneal lymphocytes and mast cells as well as in blood lymphocytes. In contrast, serotonin content was reduced in blood granulocytes and monocytes. In the F2 (grandson) generation, a reduction in mast cell serotonin content and sensitization of blood and thymic lymphocytes to repeated endorphin treatment was provoked. The significant changes were more expressed in the F2 generation compared to F1, also appearing earlier. The results unequivocally suggest that the increase in endorphin levels during late pregnancy can cause permanent changes in the F1 and F2 generations, which means that the imprinting effect can be transgenerationally transmitted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call