Abstract

The massless three dimensional Gross-Neveu-Yukawa (GNY) and Nambu--Jona-Lasinio--Yukawa (NJLY) models at finite temperatures are analyzed within the mean field framework considering all coupling values. When the number of Dirac fermions is taken to be $N_f=1/4$ (GNY) and $N_f=1/2$ (NJLY) these models relate to the supersymmetric Wess-Zumino (WZ) theory with cubic superpotential and one superfield. In this case the results show that the strong-weak entropy density ratio decreases from the Stefan-Boltzmann value, in the weak limit, to $s/s_{free}=31/35$ at strong couplings. This value agrees with the one recently obtained by applying the large-$N$ approximation to the supersymmetric $O(N)$ WZ model with quartic superpotential and $N$ superfields. When $N_f=0$ one obtains $s/s_{free}=4/5$ recovering, as expected, the ratio predicted in the context of the $O(N)$ scalar model. However, contrary to the $O(N)$ WZ model the simple Yukawa models analyzed here do not behave as CFTs for all couplings since the conformal measure exactly vanishes only at the extreme weak and strong limits although the speed of sound indicates that the deviation, at intermediate couplings, appears to be rather small. By comparing the thermal masses behavior in each case one can trace this difference as being a consequence that in the GNY/NJLY case the fermionic mass vanishes for all couplings while within the $O(N)$ WZ it only vanishes at the weak and strong limits. On the other hand, the Yukawa bosonic dimensionless masses display a more universal behavior decreasing from $2 \ln [(1+\sqrt{5})/2]$, at infinite coupling, to zero (at vanishing coupling).

Highlights

  • Superrenormalizable massless three-dimensional theories at finite temperatures provide a useful framework to analyze CFT candidates at all coupling values owing to the fact that any dimensionful coupling can be expressed in terms of the temperature

  • Strong coupling values can be generated by considering low temperatures while weak coupling values are obtained at high temperatures

  • This interesting feature has been explored in the context of the scalar OðNÞ model whose dimensionful coupling, λ, has been combined with the temperature in the dimensionless ratio λ=T allowing for investigations at all couplings [1]

Read more

Summary

Introduction

Superrenormalizable massless three-dimensional theories at finite temperatures provide a useful framework to analyze CFT candidates at all coupling values owing to the fact that any dimensionful coupling can be expressed in terms of the temperature. In this case, strong coupling values can be generated by considering low temperatures while weak coupling values are obtained at high temperatures.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call