Abstract

The involvement of neural components in plasma extravasation and blood flow in the dental pulp has been established by pharmacological and physiological studies. We review here the segmental constitution of pulp vessels and the possible involvement of neural components in both the contractility and permeability of the pulp vessels from a morphological viewpoint. Six vascular segments can be identified based on the morphology of peri-endothelial cells, such as smooth muscle cells and pericytes. These are: muscular arterioles, terminal arterioles, precapillary arterioles, capillaries, postcapillary venules, and collecting or muscular venules. The perivascular nerve forms a mesh with numerous terminal varicosities, some of which attach directly to arteriolar smooth muscle cells. This mesh can be seen by scanning electron microscopy, and indicates the important role of neural components in regulating the pulpal circulation. After administering norepinephrine (0.2 mg/kg/dog), the surface texture of the smooth muscle cells of pulp arterioles reveals marked irregularities, which are correlated with arteriolar contraction. The pericytes in larger postcapillary venules (diameter 20 microm or larger) also show irregularities, whereas no changes are seen in the pericytes of either smaller postcapillary venules or capillaries. The intercellular spaces of pericytes in the postcapillary venules are wide enough for leukocytes to pass through, and the occasional extravasation of leukocytes through venule walls can be seen under electron microscopy. The microvessels of healthy human dental pulp react weakly to selectins, indicating that apparently healthy dental pulp may be weakly inflamed. In rat dental pulp, CGRP-immunoreactive nerves and nerve terminals containing many granular vesicles supply the postcapillary venules more densely than the arterioles, which suggests the involvement of postcapillary venules in neurogenic inflammation in the dental pulp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.