Abstract

Arabidopsis thaliana has been widely used as a model plant to study acyl lipid metabolism. Seeds of A. thaliana are quite small (approximately 500×300μm and weigh ~20μg), making lipid compositional analyses of single seeds difficult to achieve. Here we have used matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to map and visualize the three-dimensional spatial distributions of two common membrane phospholipid classes, phosphatidylcholine (PC) and phosphatidylinositol (PI), in single A. thaliana seeds. The 3D images revealed distinct differences in distribution of several molecular species of both phospholipids among different seed tissues. Using data from these 3D reconstructions, the PC and PI mol% lipid profiles were calculated for the embryonic axis, cotyledons, and peripheral endosperm, and these data agreed well with overall quantification of these lipids in bulk seed extracts analyzed by conventional electrospray ionization-mass spectrometry (ESI-MS). In addition, MALDI-MSI was used to profile PC and PI molecular species in seeds of wild type, fad2–1, fad3–2, fad6–1, and fae1–1 acyl lipid mutants. The resulting distributions revealed previously unobserved changes in spatial distribution of several lipid molecular species, and were used to suggest new insights into biochemical heterogeneity of seed lipid metabolism. These studies highlight the value of mass spectrometry imaging to provide unprecedented spatial and chemical resolution of metabolites directly in samples even as small as a single A. thaliana seeds, and allow for expanded imaging of plant metabolites to improve our understanding of plant lipid metabolism from a spatial perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.