Abstract

Abstract A three-dimensional viscoelastic numerical simulation was developed for a two-layer coextrusion through a rectangular channel by using the finite element method. The Phan-Thien and Tanner model was considered as viscoelastic constitutive equations. The generalized Navier’s law was adopted to found the slip boundary condition. The numerical results of the effects of the wall slip coefficient and the flow rate on the interface profile and the degree of encapsulation were compared with the experimental results of previous researchers. It was found that the interfacial offset and the degree of encapsulation increased with the increase of the wall slip coefficient and the flow rate, and the growing rate was large when the wall slip coefficient was between 106 and 108. We were able to control the interface shape and the degree of encapsulation at the die exit by varying the wall slip coefficient and the magnitude of the melt flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.