Abstract

We investigated the three-dimensional ultrastructure of feeding tubes and the surrounding region in giant cells induced in rose balsam (Impatiens balsamina L.) roots by the root-knot nematode Meloidogyne incognita, using osmium maceration coupled with field emission scanning electron microscopy (FE-SEM). In the roots of 35-day-old galled rose balsam plants, adult nematodes induced the formation of giant cells containing feeding tubes and numerous organelles, including tubular endoplasmic reticulum (ER), cisternal ER, and mitochondria. The feeding tubes were surrounded by fine tubular structures (20-50nm in diameter), which were in turn surrounded by tubular ER (approximately 120nm in diameter). The termini of the fine tubular structures appeared to be connected to the surface of the feeding tubes, suggesting that the fine tubular structures were continuous with narrow channels in the feeding tubes. The tubular ER arose from cisternal ER. Large bundles of tubular ER were present near the feeding tube, in the centers of the giant cells, and in the peripheral regions of the giant cells, such as cell wall ingrowths, while smaller bundles of tubular ER formed networks in the giant cells. These observations suggest that tubular ER functions as vascular bundles in giant cells, facilitating the transport of nutrients. We identified capsule-shaped structures (30μm in diameter) in the giant cells that consisted of smooth, repeatedly branched ER tubules wrapped in several layers of cisternal ER. We propose that lipids and steroids are synthesized at the smooth branched ER and stored in these capsules until needed by the nematode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call