Abstract

We used Monte Carlo simulation code DEGAS and studied the neutral particle behavior in the Compact Helical System (CHS) three-dimensionally. In contrast to other helical devices, the CHS plasma in the standard configuration has contact with the inner vacuum vessel wall like the material limiter used in many Tokamaks and the neutral recycling becomes dominant there. As the intensity of neutral recycling changes also along toroidal direction, we extended our previous simulation model geometry three-dimensionally and compared the results of these models. We found the variation of the gap between the vacuum wall and main plasma enhanced toroidal transport of hydrogen molecules and atoms. As the formation of the edge transport barrier (EBT) discovered recently in CHS is characterized by a clear drop in Hα emissions, it is interesting to study the relationship with the profile of atomic/molecular hydrogen and the Hα emission profile. We estimated emission not only from excited hydrogen atoms but also from dissociated molecules with a collisional radiation model. We found that our Hα detector signal in CHS mostly came from excited atoms and that the emission profile largely changed with the ETB formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.