Abstract

This work is concerned with large-scale three-dimensional inversion under transient elastodynamic conditions by means of the modified error in constitutive relation (MECR), an energy-based cost functional. A peculiarity of time-domain MECR formulations is that each evaluation involves the computation of two elastodynamic states (one forward, one backward) which moreover are coupled. This coupling creates a major computational bottleneck, making MECR-based inversion difficult for spatially 2D or 3D configurations. To overcome this obstacle, we propose an approach whose main ingredients are (a) setting the entire computational procedure in a consistent time-discrete framework that incorporates the chosen time-stepping algorithm, and (b) using an iterative SOR-like method for the resulting stationarity equations. The resulting MECR-based inversion algorithm is demonstrated on a 3D transient elastodynamic example involving over 500,000 unknown elastic moduli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call