Abstract

Water saturation of wood impedes the availability of oxygen necessary for wood decay. Storage of logs under water sprinkling is therefore used as an economic method in forestry. However, sapwood decay caused by Armillaria spp. was found in logs under water sprinkling, even at a wood moisture content of more than 150% (dry weight basis). Decay was associated with the formation of tubular air channels discernible as bright streaks extending from the cambial region into the sapwood. Their light colour results from different refraction of light in gas-filled versus water-filled wood structures. To examine the structure of the tubular air spaces in greater detail, we sampled wood of Norway spruce (Picea abies (L.) Karst. and silver fir (Abies alba (Mill.)). Radial, transverse, as well as tangential sections of affected timber were examined, and a structural model of tubular air channels is presented. These structures are formed around wood rays by a tubular sheath of pseudoparenchymatous mycelium, which in its cellular structure is reminiscent of pseudosclerotial plates. This structure allows the efficiently located extrusion of water from water-saturated wood. The power necessary for this process is suggested to be the generation of gaseous CO2. Since the air channels are in contact with the external surface, they evidently act as a conduit allowing oxygen to enter and penetrate to a depth of several centimetres. By this unique arrangement of the tubular air channels, Armillaria spp. appear able to metabolize wood cells in an aerobic microenvironment within water-saturated wood. This results in wood decay leading to significant economic loss in stored timber despite the application of regular sprinkling.Key words: Armillaria spp., Picea abies, Abies alba, wood moisture content, oxygen supply, wood anatomy, wood decay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call