Abstract
This paper experimentally investigates the three-dimensional sloshing in a membrane-type LNG (liquefied natural gas) tank under combined roll and pitch excitations. Seven groups of roll and pitch amplitudes are studied. For each group, the roll and pitch have the same frequency, and around ten frequencies are tested in a frequency band that ranges from 0.5 times of the resonance frequency in the length direction of the tank to 1.4 times of the resonance frequency in the tank breadth. The characteristics of the sloshing waves and impact pressures are analysed in detail. It is found that the steady-state sloshing waves can be classified into four patterns: the length-dominant wave, swirling wave, diagonal wave, and breadth-dominant wave. Highlighted is the swirling wave that is observed in most of the cases where the roll and pitch amplitudes are significant and the excitation frequency locates between the resonant frequencies in the two directions. It is hypothesized that the rotational motion of the tank imposes necessary initial conditions to trigger the swirling wave. The swirling wave is always associated with wave impingements at tank corners and induce violent impact pressures. The practical implementation is that reinforcements of the membrane layer should be added or the sloshing wave should be suppressed near the tank corner to mitigate the damages to the interior layer of the membrane-type LNG tank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.