Abstract

Due to high aspect ratio, excellent thermal conductivity, and electrical insulation, boron nitride exhibits a great potential in the field of electronic packaging. However, its longitudinal thermal conductivity is far poor than horizontal thermal conductivity, which limits its application in a wider field. Herein, a three-dimensional (3D) network structure is constructed by coating boron nitride nanosheets/carbon nanotubes on foam skeleton derived from the commercial polyurethane (PU) (3D BNNS/CNTs). The in-situ grown CNTs on the surface of BNNS produce an interconnected network structure. The resultant 3D skeleton coupled with cross-linked BNNS/CNTs endows it with excellent thermal and mechanical properties. After curing with epoxy resin, the optimized 3D BNNS/CNTs15 %/Epoxy composite obtains a high thermal conductivity of 1.49 W m−1 K−1 at a low loading of 20 wt%, which achieves a thermal conductivity enhancement of 1046 % compared to neat epoxy resin. Meanwhile, the synthesized 3D BNNS/CNTs15 %/Epoxy composite maintains a high electrical resistivity above 1010 Ω m, high elastic modulus of 1.0 GPa and tensile stress of 35 MPa. Thus, this strategy may offer a new insight for constructing advanced packaging materials with excellent thermal and mechanical performances for electronic device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call