Abstract

It is proposed to build a drift tube Linac (DTL) at Raja Ramanna Centre for Advanced Technology, Indore, India, that will form a part of the future Spallation Neutron Source. This DTL will accelerate 30 mA H-ion beam from 3 MeV to 10 MeV. The DTL is designed to operate at 352.2 MHz with a maximum duty cycle of 3%. The DTL tank will consist of three sections, each about 1.2 m in length having 60 cells. The DTL has a ramped accelerating field, which is ramped in the first section of DTL from 1.8 to 2.2 MV/m and remains constant over the rest of the length of DTL. The field in DTL will be stabilized using post-couplers. The three-dimensional (3D) design of the DTL is done using CST microwave studio (CST MWS) incorporating the various non-axisymmetric components such as tuners, post-couplers and vacuum ports. The frequency shifts due to these components have been evaluated. This paper presents the details of the studies and analysis of 3D simulations of post-couplers, tuners and vacuum ports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.