Abstract
The urine formation and excretion system have long been of interest for mathematicians and physiologists to elucidate the obscurities within the process happens in renal tissue. In this study, a novel three-dimensional approach is utilized for modeling the urine concentrating mechanism in rat renal outer medulla which is essentially focused on demonstrating the significance of tubule's architecture revealed in anatomic studies and physiological literature. Since nephrons and vasculatures work interdependently through a highly structured arrangement in outer medulla which is dominated by vascular bundles, a detailed functional unit is proposed based on this specific configuration. Furthermore, due to relatively lesser influence of vasa recta on interstitial medullary osmolality and osmotic gradients as well as model structure simplicity, central core assumption is employed. The model equations are based on three spatial dimensional mass, momentum and species transport equations as well as standard expressions for solutes and water transmural transport. Our model can simulate preferential interactions between different tubules and it is shown that such interactions promote solute cycling and subsequently, enhance urine-concentrating capability. The numerical results are well consistent with tissue slice experiments and moreover, our model predicts more corticomedullary osmolality gradient in outer medulla than previous influential 1-D simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.