Abstract

We numerically investigated the film flow down an inclined plate using the volume of fluid (VOF) method. The flow simulations have been systematically carried out for a wide range of parameters, such as inlet size, inclination angle, contact angle, flow rates and solvent properties (viscosity and surface tension). Based on the simulation results, scaling theory is proposed for both interfacial area and for film thickness in terms of the Kapitza number (Ka).The Kapitza number is advantageous because it depends only on solvent properties. The Kapitza number decreases with increased solvent viscosity and is fixed for a given fluid. To investigate the effects of solvent properties on interfacial area a small inlet cross-section was used. The interfacial area decreases with increased value of Ka. The time to reach pseudo-steady state of rivulet is also observed to increase with decreasing Ka. For a fixed flow rate, the inlet cross-section has marginal effect on the interfacial area; however, the developed width of the rivulet remains unchanged. In addition to inlet size, flow rate and solvent properties, the impact of contact angle on film thickness and interfacial area was also investigated. The contact angle has negligible effect for a fully wetted plate, but it significantly affects the interfacial area of the rivulet. A scaling theory for interfacial area in terms of the contact angle and Ka is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.