Abstract

In this study, a new cooling strategy for a proton exchange membrane (PEM) fuel cell stack is investigated using a three-dimensional (3D) multiphase non-isothermal model. The new cooling strategy follows that of the Honda’s Clarity design and further extends to a cooling unit every five cells in stacks. The stack consists of 5 fuel cells sharing the inlet and outlet manifolds for reactant gas flows. Each cell has 7-path serpentine flow fields with a counter-flow configuration arranged for hydrogen and air streams. The coolant flow fields are set at the two sides of the stack and are simplified as the convective heat transfer thermal boundary conditions. This study also compares two thermal boundary conditions, namely limited and infinite coolant flow rates, and their impacts on the distributions of oxygen, liquid water, current density and membrane hydration. The difference of local temperature between these two cooling conditions is as much as 6.9 K in the 5-cell stack, while it is only 1.7 K in a single cell. In addition, the increased vapor concentration at high temperature (and hence water saturation pressure) dilutes the oxygen content in the air flow, reducing local oxygen concentration. The higher temperature in the stack also causes low membrane hydration, and consequently poor cell performance and non-uniform current density distribution, as disclosed by the simulation. The work indicates the new cooling strategy can be optimized by increasing the heat transfer coefficient between the stack and coolant to mitigate local overheating and cell performance reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.