Abstract

Photocatalytic organic transformation derived by functionalized polyoxometalate (POM)-based metal-organic frameworks provides a feasible route for fine chemical synthesis. Herein, three kinds of photoactive three-dimensional silver-containing polyoxotungstate frameworks are synthesized with the formulas [Ag3L2(OH)][Na(H2O)0.5][PW12O40]·H2O (1), [Ag4L3][SiW12O40] (2), and [Ag(H2O)][Ag4L3][BW12O40]·9H2O (3) (L = 1,4-di(4H-1,2,4-triazol-4-yl)benzene). In compounds 1-3, the cationic Ag-triazole clusters with diverse nuclei serve as nodes to assemble with rigid bridging ligands (L) and polyoxoanions to extend into stable three-dimensional frameworks, in which Keggin-type anions act as guests or pendants. When using them as heterogeneous photocatalysts, compounds 1-3 show high catalytic activity and selectivity for the photocatalytic aerobic oxidation of benzyl alcohol to benzoic acid under 10 W 365 nm light irradiation. Among them, compound 1 exhibits the highest performance with ca. 99% benzyl alcohol conversion and 99% selectivity of benzoic acid in 9 h. Compounds 2 and 3 show ca. 79 and 88% conversions of benzyl alcohol, respectively, which are higher than those of the individual Keggin-type precursors. Moreover, mechanism investigation suggests that the synergistic cooperation occurring between cationic Ag-triazole clusters and Keggin-type polyoxoanions modulates the energy band structures of compounds 1-3, resulting in the efficient separation of photogenerated carriers and accelerating the aerobic oxidation of benzyl alcohol. This work provides some important guidance for the design and development of efficient POM-based photocatalysts for practical organic transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call