Abstract

This paper presents results of an experimental study on three-dimensional scour at submarine pipelines with uniform sediment under a unidirectional current in clear-water conditions. The data show that propagation of the scour hole in the transverse direction of flow may be divided into a rapid and a slack phase of development. The former is characterized by a higher and constant velocity, whereas the latter a lower and reducing propagation velocity. Four nondimensional parameters are identified and their effects examined experimentally. Pipeline embedment and water depth to pipeline diameter ratios, which represent the stability force, inhibit the scouring process, resulting in a reduced propagation velocity and a dominant slack phase of development. Conversely, Froude number and Shields parameters represent the environment force; they enhance the scouring process, causing a high propagation velocity and a dominant rapid phase of development. The experimental results reveal that the scour process is not sensitive to Shields parameter under clear-water conditions but is closely related to the other three parameters. The effect of all the parameters can be viewed in a balance between the environment and stability forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.