Abstract

Corneal transparency is fundamental to the visual system, and is directly related to the ordered collagen fibril architecture that the cornea maintains. Proteoglycans, through their protein core and highly anionic glycosaminoglycan side chains, are thought to regulate the collagen organisation in the corneal stroma. To understand the inter-relationships between proteoglycans and collagen fibrils in the cornea, adult mouse corneas were treated with cuprolinic blue and three-dimensional reconstructions of the anterior, mid and posterior corneal stroma were obtained. The reconstructions show regular diameters of collagen fibrils throughout the cornea and uniform interfibrillar spacing within each region. Both longitudinal and transverse reconstructions were obtained to establish a clear picture of proteoglycan organisation, yet no distinct regular pattern or symmetry of proteoglycan orientation was observed. Large, electron-dense proteoglycans (possibly chondroitin sulphate/dermatan sulphate proteoglycans) interconnecting two or often three adjacent collagen fibrils are seen, whilst another sub-population of smaller proteoglycans (of the keratan sulphate variety) interconnect only neighbouring fibrils. The reconstructions suggest a complex interaction between proteoglycans and collagen, which allows for the dynamic control of collagen fibril architecture in the cornea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call