Abstract
Three-dimensional Voronoi tessellations are utilised to demonstrate the simulation of brittle damage around underground mine excavations. Synthetic rock mass models are developed based on calibrated simulations that have been up-scaled to represent excavation-scale rock mass conditions. Rock mass anisotropy plays a significant role in the stability of underground excavations, and so anisotropic conditions are replicated by implementing the up-scaled laminated grain-based model composed of elongated three-dimensional Voronoi blocks. Models explore the influence of the orientation of anisotropic fabric with respect to the in situ stress tensor to demonstrate the Voronoi-based discrete element method modelling technique for simulation of brittle failure. The numerical results verified the success of this approach in capturing the correct failure mode controlled by fabric-guided fracturing in the walls of deep undergrounds openings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.