Abstract

The well-known quantum Hall effect (QHE) was usually studied in 2D systems. In this work, we investigate the integer QHE in 3D Weyl and double-Weyl semimetals. Based on the lattice models of Weyl and double-Weyl semimetals subjected to a uniform magnetic field, we derive the generalized 3D spinfull Hofstadter Hamiltonians and Harper equations for the two systems, and obtain their corresponding energy spectra. Furthermore, we show that for proper hopping parameters and rational magnetic fluxes, both systems exhibit the 3D QHE when the Fermi level lies in some band gaps. The 3D QHE is topologically characterized by three Chern numbers with one or two nonzero Chern values which are respectively defined for three crystal planes. The possible experimental realization and detection of the 3D QHE are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.